MLIJC overview

* Eric, Will, and Andy

e Paper discussions — interesting developments for ML in
atmos/climate science

* “Science”-focused papers (e.g., this one)
* Methodology-focused papers
* |f leading a methodology-focused paper, present like nobody has read the
paper
e Watch parties

 Talks (your research or someone else’s)

* Workshops
 Summer workshops
* Open-to-all workshop in winter quarter (?)



Volunteers for future meetings

* Oct 31
e Leader: Will
* Pizza: Eliot

* Nov 14
* Leader: Andy!
e Pizza: Eric

* Dec5

* Leader:
* Pizza:



Chat with your neighbor ~3 mins
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* What was the main point of the paper?
* Did you like the paper? Why?

* Was it easy to understand?

* What additional info do you wish you had?



Main point
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* Few ensemble members in ClimateBench leads to overfitting
* Linear pattern scaling does better for many (nonlinear variables)

* Need a lot of ensemble members for benchmarking!
 (unstated) Evaluation against null hypothesis model necessary



<5 min. overview of necessary methods

* ClimateBench

* Linear pattern scaling
* CNN-LSTM

* Bias-variance tradeoff



ClimateBench

* Hist- and ssp- runs

* Inputs of CO,, methane, SO,,
and black carbon

* Training + predicting on
ensemble mean ﬁ —-2I.5 OfO 2?5 5.0
* ssp2-4.5 held out (K)

* 3 members

* Compare to MPI-ESM1.2-LR
(this study)

* 50 members
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Watson-parris et al. (2022)



Linear pattern scaling (LPS)

Cum. CO,
Global avg. temperature ~surf 1obal lobal
, T. =w¥"%x , +b*
scales w/ cumulative CO, e !
local 2 surf local
Regional patterns scale w/ Yijte =Wij Ti. +Db;;
global avg. temperature Fixed pattern

 Params = 2 * (# grid cells)
* Not sure why Watson-Parris et al. (2022) didn’t use this model?



CCN-LSTM (encoder-LSTM-decoder)

* Includes all inpUtS encoder decoder
° 20 fllters Of Shape (3, 3) nput Image Reconstructed Image

* Pooling removes spatial information Lt
* Latent LSTM state is 20 |

LST™M |

* 10-year memory

* No hyperparameter optimization

Encoding Decoding
Phase Phase

Ravindu Senaratne



Bias-variance tradeoff: when do | use what model?

Bias(g) = E[g] — : MSE(9)) = (Biabs(?jv))2 + Var(y)
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Results

* Why use a large ensemble over a small ensemble?
* LPS vs. heavy-hitters
* Small vs. large ensemble theory



Why use a large ensemble? (Fig. 2)
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LPS performance validation (Fig. 4)

T T 1 | > L |

0 2 4 6 ~1.0 -05 0.0 05 1.0
Target tas anom., Predicted tas anom., Error (pred-target) in tas anom.
averaged over 2080-2100 in °C avg 2080-2100 in °C avg 2080-2100 in °C

Figure 4. Linear pattern scaling error map. The left plot shows the target surface temperature anomalies (tas) from the ssp245 ClimateBench test set, which are averages
over 3 realizations and 21 years (2080-2100). The middle plot shows the linear pattern scaling predictions and the right plot the error of predictions minus the target. The
other variables are plotted in Figures C1-C3.



LPS on ClimateBench

Table 1
ClimateBench Results Table Including Linear Pattern Scaling

90" percentile
Surface temperature Diurnal temperature range Precipitation precipitation

Ref. #iparam  Spatial Global Total Spatial Global Total Spatial Global Total Spatial Global Total

Gaussian process WP22 n/a 0.109  0.074" 0478  9.21 2.68 22.6 2.34 0341  4.05 2.56 0429  4.70
CNN-LSTM WP22 365K 0.107 0.044" 0327 992 1.38 16.8 2.13 0209  3.18 2.61 0346 4.34
CNN-LSTM (reproduced) N23 365K  0.123 0.080" 0524  7.47 1.23 13.6 2.35 0.151  3.10 3.11 0282 452
Random forest WP22 475K 0.108  0.058" 04’ 9.20 2.65 22.5 2.52 0502  5.04 2.68 0543 540
Cli-ViT N23 unavail. 0.086" 0.044" 0305  7.00 1.76 15.8 2.22 0241 343 2.80 0329 445
ClimaX N23 108M  0.085" 0.043" 0.297  6.69 0.810 10.7 2.19 0.183  3.11 2.68 0342  4.39
Linear pattern scaling ours 277K 0.0786 0.0410 0.284 8.02 2.15 18.8 1.87 0.268  3.20 2.25 0357 4.03
Target std. dev. WP22 - 0.052" 0.072" 0414 251 1.49 9.97 1.35 0268  2.69 1.76 0457  4.04

 Why does LPS perform better?
* Is this a fair comparison?



LPS vs. CNN-LSTM on large ensemble (Fig. 5, precip)
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Theory (Fig. 7)
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(e) Neural network fits
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(f) MSE, bias, and variance




Chat with your neighbor ~3 mins
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* What was the main point of the paper?
* Did you like the paper? Why?
 Was it easy to understand?

 What additional info do you wish you had?
e OQut-of-sample forcings (less correlated input space)
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